Q.P. Code: 16EC402

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

BTECH II Year I Semester Supplementary Examinations June 2019 SWITCHING THEORY AND LOGIC DESIGN

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

	(Answer all Five Units $5 \times 12 = 60$ Marks)	
UNIT-I		
1	a Perform the following using BCD arithmetic	6M
	(i) $(79)_{10} + (177)_{10}$ (ii) $(481)_{10} + (178)_{10}$	0171
	b Subtraction by using 2's complement for the given	6M
	i)111001-1010 ii) 10011-10001 iii)1001-101000	0111
	OR	
2	a State Duality theorem. List Boolean laws and their Duals.	6M
	b Give the truth table of logic gates.	6M
	UNIT-II	
3	Minimize the given Boolean function F (A, B,C,D) = Σ m(0,1,2,3,6,7,13,15) using	12M
	tabulation method and implement using basic gates.	12111
	OR	
4	Simplify the following Boolean function for minimal SOP& POS form using K-map	
	i) $F(A, B, C, D) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$	12M
	ii) $F(A, B, C, D) = \pi(1,3,6,9,11,12,14)$	
	UNIT-III	
5	a Design & implement BCD to Excess-3 code converter.	6M
	b Design & implement 4-bit Binary Adder-subtractor.	6M
	OR	
6	a What is Decoder? Design three to eight-line Decoder.	6M
	b Design & implement BCD To seven segment decoder.	6M
	UNIT-IV	
7	a a) Draw the logic symbol, characteristics table and derive characteristics equation of JK	0.1
	flip flop.	6M
	b b) Design T Flip Flop by using JK Flip Flop and draw the timing diagram.	6M
	OR	
8	a Implement 6-bit ring counter using suitable shift register. Briefly describe its operation.	10M
	b Write the difference between Latch and Flip flop	2M
	UNIT-V	
9	Implement the following Boolean function using PLA	
	(i)F1= Σ m(0,1,2,3,8,10,12,14) (ii)F2 = Σ m(0,1,2,3,4,6,8,10,12,14).	12M
OR		
10	Give the logic implementation of a 32x4 bit ROM using a decoder with necessary diagram.	12M

*** END ***